2,845 research outputs found

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al

    Spatial housing economics: a survey

    Get PDF
    This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    A systematic review of interventions addressing limited health literacy to improve asthma self-management

    Get PDF
    BACKGROUND: Supported asthma self-management improves health outcomes. However, people with limited health literacy, especially in lower-middle-income countries (LMICs), may need tailored interventions to enable them to realise the benefits. We aimed to assess the clinical effectiveness of asthma self-management interventions targeted at people with limited health literacy and to identify strategies associated with effective programmes. METHODS: Following Cochrane methodology, we searched ten databases (January 1990 - June 2018; updated October 2019), without language restriction. We included controlled experimental studies whose interventions targeted health literacy to improve asthma self-management. Selection of papers, extraction of data and quality assessment were done independently by two reviewers. The primary outcomes were clinical (asthma control) and implementation (adoption/adherence to intervention). Analysis was narrative. RESULTS: We screened 4318 titles and abstracts, reviewed 52 full-texts and included five trials. One trial was conducted in a LMIC. Risk of bias was low in one trial and high in the other four studies. Clinical outcomes were reported in two trials, both at high risk of bias: one of which reported a reduction in unscheduled care (number of visits in 6-month (SD); Intervention:0.9 (1.2) vs Control:1.8 (2.4), P = 0.001); the other showed no effect. None reported uptake or adherence to the intervention. Behavioural change strategies typically focused on improving an individual's psychological and physical capacity to enact behaviour (eg, targeting asthma-related knowledge or comprehension). Only two interventions also targeted motivation; none sought to improve opportunity. Less than half of the interventions used specific self-management strategies (eg, written asthma action plan) with tailoring to limited health literacy status. Different approaches (eg, video-based and pictorial action plans) were used to provide education. CONCLUSIONS: The paucity of studies and diversity of the interventions to support people with limited health literacy to self-manage their asthma meant that the impact on health outcomes remains unclear. Given the proportion of the global population who have limited health literacy skills, this is a research priority. PROTOCOL REGISTRATION: PROSPERO CRD 42018118974

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    The prevention of contrast induced nephropathy by sarpogrelate in patients with chronic kidney disease: a study protocol for a prospective randomized controlled clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contrast-induced nephropathy (CIN) is a serious clinical problem associated with increased morbidity and mortality, particularly in patients with chronic renal insufficiency. Although some agents including hydration with saline are being prescribed to prevent renal deterioration in these high risk patients, their efficacy is not clearly defined and debatable. Therefore additional prophylactic pretreatments are needed.</p> <p>Methods/Design</p> <p>The present study aims to investigate differences in occurrence of CIN after sarpogrelate premedication in patients with chronic kidney disease (CKD). 268 participants, aged 20-85 years with a clinical diagnosis of CKD will be recruited. They will be randomly allocated to one of two conditions: (i) routine treatment without sarpogrelate, and (ii) routine treatment with sarpogrelate (a fixed-flexible dose of 300 mg/day). The primary outcome is the occurrence of CIN during 4 weeks after receiving contrast agent.</p> <p>Discussion</p> <p>As of May 2010, there were no registered trials evaluating the therapeutic potentials of sarpogrelate in preventing for CIN. If sarpogrelate decreases the worsening of renal function and occurrence of CIN, it will provide a safe, easy and inexpensive treatment option.</p> <p>Trial registration</p> <p>NCT01165567</p

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
    corecore